Prokaryotic cells – Bacteria

I. Introduction

- the most numerous and ancient inhabitants
- billions of years develop along with eukaryotes
- each prokaryotic cell is an independent organism it lives independently
- adapted to the conditions inhabit all living environments
- for humans

harmful

🥒 eubacteria

🗕 classification 🥧 cyanobacteria

archaebacteria

II. Eubacteria

1. Characteristics

simple organisms

-dimensions 0,2 -2,0 μm

number tens of thousands of species

studied about two thousand species - bacteriology

2. Indicators for distinguishing species

- cell shape
- arrangement of cells into cell associations
- presence of flagella
- way of obtaining energy
- -- pigmentation
- pathogenicity

4. Cell associations

- during reproduction the cell generations remain united
- --- only in cocci depending on the number of divisions and the plane of division
 - diplococci (pairs)
 - tetracocci (fours)
 - --- streptococci (chain)
 - ____ staphylococci (clusters)
 - ____ sarcines (packages)
 - cause severe human disease

5. Bacterial cell structure

a) plasma membrane

$$\in$$

structure - lipids, proteins forms a fold to the cytoplasm - mesosome functions - general membrane functions

b) cell wall

on the plasma membrane structure - polysaccharides (murein), lipids, proteins functions \rightarrow gives shape

6.2. Respiration

- \rightarrow enzymes that break down organic matter
- \rightarrow get material, energy
- \rightarrow species

heterotrophs - aerobes need oxygen

heterotrophs - anaerobes break down organic matter in an oxygen-free environment production

6.3. Reproduction

One generation lives 20-30 minutes - grow and divide by simple division in the middle zone - mesosome

- a) essence
- the cell lengthens
- the chromosome attaches to the plasma membrane in the middle zone the mesosome
- from the point of attachment duplication of DNA
- cell elongation the two new chromosomes separate
- barrier formation (from the plasma membrane and the cell wall)

b) conditions

- availability of nutrients
- oxygen
- heat
- moisture
- (c) reproductive inhibitors
- antibiotics
- UV rays
- low temperatures

7. Archaebacteria - exist in extreme conditions

- → vacuum
- \rightarrow acid solutions
- ightarrow at a temperature of + 90 $^\circ$ C
- → highly concentrated NaCl solution

8. Optional structures

movement in a liquid medium

rotating motion

short projections

large number

help binding to animal cells

9. Significance of frequent reproduction

 \rightarrow the hereditary programme changes greatly under the influence of the environment - mutations occur and a new type of bacteria is formed

- \rightarrow quick adaptation
- \rightarrow fighting them is difficult

10. Endospores

 \underline{reason} unfavourable conditions \rightarrow lack of nutrients

∖vdrought, cold

formation _____ cell processes stop

viability of spores

• spore formation is not a form of reproduction, as only one spore is formed from one

bacterium

11. Methods of destruction

• chemicals \rightarrow 70% alcohol

 \rightarrow 5% iodine tincture